The sea ice is leaving us a bit more every year. It's time to start contemplating its absence, which is why I teamed up with Kevin McKinney to write an extended version of the shorter piece you might see pop up here and there. Because you know, disappearing sea ice isn't without consequences.
And that's why it shouldn't leave you cold.
---
Why Arctic sea ice shouldn't leave anyone cold
The first world in ancient Norse mythology, Niflheim,
sounds just like the Arctic ice. Its snow- and ice-melt gave rise to the frost giant Ymir, from whose body the whole cosmos was formed. Today, science tells us a different story about the sea ice, but in that story, too, the ice is far older than humans. According to Polyak et al. (2010):
…sea ice became a feature of the Arctic by 47 [million years before the present], following a pronounced decline [in carbon dioxide concentrations]… Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth's overall cooler climate.
Since modern humans are just 200,000 years old, the ice might as well be eternal.
But not unchanging. We live in that part of an ice age that is termed an interglacial, when some of the ice retreats in summer. During modern human history the ice cap has melted back each summer as Earth tipped toward the sun, then grown again with new freezing as the year turned toward the Winter solstice.
Polyak et al. continues:
Nevertheless, episodes of considerably reduced sea ice or even seasonally ice-free conditions occurred... The current reduction in Arctic ice cover started in the late 19th century, consistent with the rapidly warming climate, and became very pronounced over the last three decades. This ice loss appears to be unmatched over at least the last few thousand years…
This information is based upon the detailed study of ‘proxies’—indirect indicators of sea ice extent, including sea-floor sediments containing distinctive mineral, chemical and biological markers; coastal records which include things as diverse as ancient driftwood and geological beach formations; ice-cores from nearby land ice; and tree-ring records, where available.
Direct observations of sea ice go back a surprisingly long way: a Greek navigator, Pytheas of Massilia, sailed into the open Atlantic in 325 BCE, reaching:
…a land he called "Eschate Thule," where the Sun only set for three hours each day and the water was replaced by a congealed substance "on which one can neither walk nor sail." He was probably describing loose sea ice known today as "growlers", or "bergy bits." His "Thule" was probably Norway…
Since then, humans have repeatedly encountered the ice, from 11th century Novaya Zemlya, to the Norse colony in Medieval Greenland, to Henry Larsen’s 1944 transit of the Northwest Passage. For many it proved a fatal encounter; the names of Hugh Willoughby, Willem Barents, Henry Hudson, and John Franklin would only begin a list of Arctic explorers who bartered their lives for their discoveries. During this time, the annual melt and refreeze of the ice has been relatively consistent.
But that has changed. Since the turn of the millennium, transits of Northwest and Northeast Passages have increased dramatically. In the Northeast, millions of tons of supertanker traffic have passed already, and Russian infrastructure investments indicate that this is a mere beginning. In the Northwest, Arctic charter cruising has become a growing industry. In both, recreational boaters are increasingly common; and many of them now report that they see no pack ice at all.
Science confirms this anecdotal evidence: satellite measurements show that the ice extent has shrunk since 1979 by nearly 30%. More alarming still, the estimated volume of the sea ice is down a whopping 75%! When the IPCC released its Fourth Assessment Report in 2007, it was generally thought that the Arctic could become ice-free somewhere near the end of this century. But ice loss has progressed at such speed that scientists now think 2030 might bring the first ice-free Arctic summer. Some say it could even happen this decade.
And if it does? Well, the Arctic sea ice is a highly efficient reflector of solar energy; where there is no ice, dark ocean water absorbs most of the sunlight. The less ice there is, then, the more the ocean heats up. This in turn melts more ice—an example of a positive feedback in action. It is a feedback chain bearing all kinds of consequences for the Arctic region. Disappearing ice can be good for some species; for instance, tiny algae may profit from the warmer waters and an extended growing season. But those species dependent upon the sea ice for sustenance or habitat—species from microscopic sea ice diatoms, to seals and walrus, to those charismatic polar bears—may suffer, perhaps even to the point of catastrophe.
Rapidly changing conditions also have repercussions for human populations, whose income and culture depend on sea ice. Their communities literally melt and wash away with no sea ice to weaken wave action, and their food supplies—often still 50% ‘country food’—are at risk, as populations of traditional prey species (and frequently access to them
as well) are disrupted.
But what happens in the Arctic doesn't stay in the Arctic. When sea ice cover disappears, the changing interaction between sea and atmosphere can shift atmospheric patterns. The results may be felt all over the Northern Hemisphere. As we have seen, a smaller ice pack, combined with an ever earlier melting season, means more and more sunlight is soaked up by dark ocean waters. These warmer waters then release heat and moisture to the atmosphere during fall and winter—an effect already being observed and measured.
This change in turn may already be disturbing the jet stream, the high-altitude wind that separates southern warm air from cold Polar air. A destabilized jet stream becomes more 'wavy', allowing frigid air to plunge farther south, a possible factor in the extreme winters
that were experienced all around the Northern Hemisphere in recent
years.
Another side-effect is that as the jet stream waves become larger, they slow down or even stall at times, leading to a significant increase in so-called blocking events. These cause extreme weather simply because they lead to unusually prolonged conditions of one type or another. The recent prolonged heatwave, drought and wildfires in the USA are one example of what can happen; another is the cool, dull and extremely wet first half of summer 2012 in the UK and other parts of Eurasia.
The accumulation of heat in Arctic waters also influences other frozen parts of the Arctic, such as glaciers and ice caps on Greenland and in the Canadian Archipelago.
As there is less and less sea ice to act as a buffer, more energy can
go into both melting glaciers from below, and warming the air above them. This
has a marked effect on Greenland's marine-terminating glaciers and the
Greenland Ice Sheet. Not only are glaciers flowing faster towards sea, but there is also a rapid increase in the summer surface melt Greenland experiences, leading to accelerating mass loss from the Greenland Ice Sheet. As the Arctic warms, an increased contribution to sea level rise is inevitable.
Another way Arctic warming could have worldwide consequences is through its influence on permafrost.
Permanently frozen soils worldwide contain 1400-1700 Gigatons of
carbon, about four times more than all the carbon emitted by human
activity in modern times. A 2008 study found that a period of abrupt sea-ice loss could lead to rapid soil thaw, as far as 900 miles inland. Apart from widespread damage to infrastructure in northern territories (such as roads, houses and pipelines), the resulting annual carbon emissions could eventually amount to 15-35 percent
of today’s yearly emissions from human activities. This would make the reduction
of atmospheric greenhouse gases a much more difficult task.
An even more worrying potential source of greenhouse
gases is the methane in the seabed of the Arctic Ocean, notably off the
coast of Siberia. These so-called clathrates
contain an estimated 1400 Gigatons of methane, a more potent though
shorter-lived greenhouse gas than carbon dioxide. Methane clathrate, a
form of water ice that contains a large amount of methane within its
crystal structure, remains stable under a combination of high pressure
and low temperature.
At a depth of 50 meters or less, the East Siberian Arctic Shelf may contain the shallowest methane clathrate deposits, and thus those most vulnerable to rising water temperatures. High amounts of methane have been recently been measured over ice-free portions of the Arctic Ocean, and the waters of the East Siberian Sea have been shown to be “super-saturated” with methane; large plumes of methane bubbles have been observed there as well. The origins and significance of these emissions are not yet clear, but Arctic methane emissions in general appear to be rising: methane concentrations in the Arctic now average about 1.90 parts per million, the highest in 400,000 years.
Apart from these unrecoverable sources of fossil fuel, the Arctic is also endowed with large amounts of recoverable oil and
natural gas. As the sea ice retreats, the Arctic's fossil treasures are eyed greedily by large corporations and nations bordering the Arctic Ocean. This might lead to geopolitical tensions
in a world where energy is rapidly becoming more expensive. (It is also highly ironic that the most likely cause of the disappearance of Arctic
sea ice - the extraction and burning of fossil fuels - could lead to
more extraction of said fuels. Another feedback loop.)
News articles on the dangers of Arctic sea ice loss are usually illustrated with pictures of polar bears. But although many animals in the Arctic are threatened by the vanishing Arctic sea ice, homo sapiens may be the species with most at stake. While Arctic sea ice may be “out of sight, out of mind” for many, it does affect human civilization over the Northern hemisphere, and even beyond: after thousands of years in which the sea ice played a vital role in the relatively stable conditions under which modern civilization, agriculture and a 7 billion strong world population could develop, it increasingly looks as if warming caused by the emission of greenhouse gases is bringing these stable conditions to an end.
Whether there still is time to save the Arctic sea ice is difficult to tell, but as we've seen, serious consequences will flow from the disappearance of the sea ice. It appears that these consequences can only be mitigated by keeping fossil fuels in the ground, and carbon out of the air. Whichever way you look at it, business-as-usual is not a sane option.
---
Images used:
Niflheim - Northern Shamanism
Winter solstice - Crystalinks
Thule on the Carta Marina of 1539 - Wikipedia
Arctic sea ice extent reconstruction - Kinnard et al. 2011
Sea ice albedo feedback - NASA
Polar jet stream - NC State University
Sea ice and the Arctic coast - NSIDC Icelights
Greenland ice sheet surface melt - NASA
Permafrost distribution in the Arctic - GRID-Arendal
Atmospheric methane concentration - NOAA ESRL
Russia plants flag at North Pole - Reuters
Joe and Neven, I am so sorry to hear about the suffering in you family. I wish both of you hope and strength to get through this difficult period.
Your notes makes me realize how precious our life is, and that we should live every day to the fullest extent.
My thoughts are with you guys.
Posted by: Rob Dekker | September 04, 2012 at 10:23
Some other issues to ponder as it relates to the Arctic.
1. The 1F increase that's coming in the next 30 years (if all CO2 production should cease right now).
2. The impact of Methanogens' increased metabolic rate due to the warming of the soil. This is apart from the mere increase of permafrost thaw.
Posted by: Villabolo | September 04, 2012 at 10:31
Neven, hi,
I’m in a metaphysical mood these days. May enlightenment be with you and yours. I was tempted to quit following after my last post above. I’ve seen it all and that sort of thing. So I can relate to your feelings.
As an individual, I’d like to spend whatever time I have in gardening. But you, your blog and the Group have become part of that. So I’ll hang on.
I’m glad that was Georges Brassens, the talented songwriter. Not Sartre.
It is said that the Bhagavan Buddha contemplated long after the moment of enlightenment. He chose to share…
Posted by: Werther | September 04, 2012 at 11:24
BTW following my post on getting this into the discussions in media and between people I start having visions of possible symbols.
Now this has nothing to do with science, and I’m not even remotely credible on the artistic side.
But I see this child, a baby, sitting on the sand on a beach. Close to the waves. Infinite sea in unpredictable movement. It’s head is over the horizon, in perspective. It is surrounded by cloudy skies.
It is an image that makes me wonder. It doesn’t frighten, but it draws attention. Who could resist to help?
Hope to work this out soon. Maybe there’s something done like this yet?
Posted by: Werther | September 04, 2012 at 11:40
Joe,
Prayers for you and your family, and same for Neven's. The unexpected hurt of loved ones and the loss of others remind us that life is fragile and is a precious gift.
Neven, while it is tempting to branch out into areas other than ice - it is the focus of this blog that has attracted those who contribute - and those draw from it.
I am surprised and impressed with how often what is contributed here is beginning to show up in the broader media or govt. presentations. It demonstrates that what we are about is making a difference.
In my real life, studies show there is a point of social media impact that comes when a site/message continues a message that shapes people's opinion and that has influence. It takes time - we are getting there - thanks to Neven.
So for now - to echo others - "let's focus on the ice" and its science ramifications.
Posted by: Apocalypse4Real | September 04, 2012 at 12:03
Sorry to hear about the family problems Joe and Neven are facing!
My suggestions to the future Arctic Sea Ice Blog are.
1. Main focus on the Arctic Sea and the surrounding sea ice.
2. The ice cap Greenland.
3. Local glacier reports from SE,NE,NO,NW and SW of Greenland, Canada, Norway (Svalbard) and Russian Islands
4. Fast ice reports Greenland, Canada.
All above topics should be moderated by a main editor (Neven) and chosen sub-editors, primarily to relieve Neven from the heavy work keeping this site together.
If a nice format is established I will sponsor my domain names Ecovery.com / Ecovery.org and Ecovery.net a domain I find pretty relevant to the topic.
Posted by: Espen Olsen | September 04, 2012 at 12:24
Thanks for your sympathy. I feel sorry for my aunts and uncles, but am more sad about the stupidity that caused their disease (unhealthy lifestyles and never thinking about it).
Not to be modest or anything, but this has been a group effort from the start. I'm just the janitor. Build a public toilet, and it will be used. Especially if you keep it clean. :-p
Posted by: Neven | September 04, 2012 at 13:06
Hi All,
My suggestion is to clone another typepad blog dealing with the impacts/philosophy/politics of the melt, my initial feeling is a name of 'neven2', in the future maybe we can clone again.
Posted by: Mike | September 04, 2012 at 13:11
Neven said
Very well worded, Neven. I hope that janitorial work will continue to be the least of your worries as this blog continues in popularity. So far, it's self-cleansing properies seem to be unmatched in the blogosphere.
Posted by: Rob Dekker | September 05, 2012 at 10:46
A bit more information out on arctic fresh water increase from runoff and storms affecting climate in the northern hemisphere. This may be old news to some people.
http://www.sciencedaily.com/releases/2012/09/120905200554.htm
Posted by: r w Langford | September 06, 2012 at 02:32
A comment I saw on another site - posted, apparently, by a Greenlander.
"The amount of ice comming out from Ilulissat icfjord has been extreme for the last 8-10 days. Like a giant white freight train way out in the horizon as far as you could see.
....
Summers up here are getting warmer. The intensity of the sun's rays in june/juli/aug. makes you feel like a potato being baked. Meassured temperature set new records in several cities. "
Posted by: Bob Wallace | September 06, 2012 at 19:23
And here's a 'nice' permafrost piece: Siberian Arctic Yedoma permafrost carbon release 10x faster than expected
Posted by: Neven | September 07, 2012 at 08:31
Chris Biscan
http://www.americanwx.com/bb/index.php/topic/31853-2012-global-temperatures/page__st__945
Today on Americanwx(I am frivolousz21) I couldn't as well as others duplicate Bob Tisdale's North and South Pacific sst's.
Not that I am saying he manipulated them, but can anyone help us out? Am I missing something or is the error on his part?
duplicate, just want anyone who can help see it, Neven, you can delete a few of these if you wish, but I'd appreciate it if you left them up for a few hours.......
Posted by: Chris Biscan | September 07, 2012 at 09:10
Bob Wallace - intersting observation. I think recently a 'dam', created by grounded icebergs at the fjord mouth, broke. Somewhere between day 234 and 239 (on MODIS imagery), there was a large flux of bergs out into the open ocean from Ilulissat Fjord. Over the following five days, a great many of the bergs in the lower half of the fjord were able to exit, partially clearing that bit of fjord. Meanwhile, the ice up near the ice front progressed rapidly down the fjord from day 239 (as marked by the evolution of a dark streak of material among the bergs near the ice front between day 239 and 243), mostly refilling the lower part of the fjord with bergs by day 246. A new km-scale berg calved off the southern calving front between day 243 and day 246.
The fjord will effectively be "full" again over the next day or so as the mass of ice from the upper fjord finished filling the lower fjord, and it will be interesting to see if a new dam is formed at the fjord mouth.
It will also be interesting to see if this change in the Ilulissat fjord affects the overall calving front position, via a loss of back pressure on the calving front.
Posted by: skywatcher | September 07, 2012 at 09:56
Not particularly on theme, but....
Tax breaks for oils companies.
http://uk.reuters.com/article/2012/09/07/uk-britain-economy-northsea-idUKBRE88609Q20120907
Posted by: Derek | September 07, 2012 at 10:17
@ Geoff Beacon, all the reports by the IPCC are known to be overly-conservative due to all participating Governments having to agree what goes into them.
Posted by: AbbottisGone | August 07, 2015 at 01:40